ОТДЕЛ ФИЗИКИ АТМОСФЕРЫ, ИОНОСФЕРЫ
  И РАСПРОСТРАНЕНИЯ РАДИОВОЛН   
ИСЗФ СО РАН
English
Задачи
Радар НР
Ионозонд
Базы
В задачи отдела входят теоретические и экспериментальные исследования распространения радиоволн УКВ и КВ диапазонов, изучение ионосферы и нейтральной атмосферы с помощью методов дистанционного радиозондирования.

Состав отдела
Публикации
Текущая космическая погода
Space Weather
ONLINE Library
Центр коллективного пользования
Радар НР
ЛЧМ Ионозонд
Дигизонд
Библиотека ссылок
Лекции для молодых ученых
Сайт молодых ученых



Обратная связь




Области исследования
  1. развитие метода ВЗ на основе исследований быстрых вариаций структуры сигналов
  2. распространение декаметровых радиоволн в реальном волноводе Земля-ионосфера
  3. зондирование ионосферы методом НР и распространение радиоволн метрового диапазона
  4. экспериментальные исследования ионосферных возмущений естественного и техногенного происхождения и трансионосферного распространения радиоволн дециметрового диапазона на основе обработки данных глобальной сети двухчастотных приемников навигационных систем GPS-GLONASS.


1. Развитие метода ВЗ на основе исследований быстрых вариаций структуры сигналов.

1.1. Экспериментальные исследования.
Продолжение начатых ранее исследований, с более четкой формулировкой их задач и тщательной отработкой методик проведения наблюдений. Поэтапное расширение аппаратных возможностей эксперимента: зондирование на нескольких частотах, использование различных видов излучаемых сигналов, измерение двух поляризаций.

1.2. Исследования на основе экспериментальных данных.
Развитие методик первичной и вторичной обработки формы сигналов ВЗ, создание баз данных. Исследование количественных характеристик и закономерностей радиофизических параметров, определяющих быстрые вариации структуры сигналов.

1.3. Исследования структуры сигнала ВЗ методом численного моделирования.
Изучение вариаций параметров, определяющих структуру сигнала, для различных моделей профилей электронной концентрации и частоты столкновения в рамках слоистой модели среды, в том числе с учетом магнитного поля. Проработка задачи диагностики ионосферы и интерпретации экспериментальных данных.

1.4. Теоретические исследования задачи ВЗ.
Исследование вопросов теории ВЗ для трехмерно-неоднородной, нестационарной ионосферы с учетом магнитного поля. Разработка основ интерпретации экспериментальных данных и методов диагностики вариаций ионосферных параметров.

2. Распространение декаметровых радиоволн в реальном волноводе Земля- ионосфера и его диагностика.

2.1. Экспериментальные исследования, разработка методов зондирования и аппаратных средств.
Продолжение исследований по распространению ЛЧМ-сигналов на основе изучения ионограмм НЗ и ВНЗ, в рамках регулярных наблюдений и целенаправленных экспериментов. Реализация измерений структуры (формы) сигналов НЗ, ВНЗ с помощью комплекса цифровой регистрации. Исследования искажений ШПС в реальном волноводе Земля -ионосфера (С выводом аппаратных средств за пределы стационарности канала). Реализация угловых измерений (на базе имеющегося антенного оборудования). Совершенствование методик обработки данных зондирования методом НЗ и ВНЗ.

2.2. Моделирование сигналов НЗ, ВНЗ и диагностика волновода Земля-ионосфера.
Продолжение исследования вопросов распространения на основе моделирования характеристик сигналов НЗ, ВНЗ и сопоставления с экспериментом (в том числе выяснение области применимости имеющихся моделей распространения). Моделирование формы сигналов НЗ и изучение их искажений (особенно ЛЧМ-сигналов при различных девиациях). Моделирование сигналов ВНЗ, включая изучение модельных задач, особенно временных зависимостей, амплитудный рельеф сигналов. Совершенствование методик оперативной диагностики геофизических параметров волновода Земля-ионосфера.

2.3. Задачи теории распространения декаметровых радиоволн в волноводе Земля-ионосфера.
Разработка теории распространения для многослойной, крупномасштабной неоднородной модели ионосферы. Исследование вопроса влияния магнитного поля на дальнее распространение. Учет мелкомасштабных неоднородностей ионосферы. Вопросы теории распространения в модели с "шероховатой" поверхностью Земли и метода ВНЗ. Вопросы теории распространения радиосигналов различных типов с учетом нестационарности ионосферы. Разработка теоретических основ методов диагностики волновода Земля-ионосфера.

3. Зондирование ионосферы методом НР и распространение радиоволн метрового диапазона.

3.1. Экспериментальные исследования и развитие экспериментальной базы радара НР

  • Отработка методик эксперимента в рамках "стандартного" режима наблюдений. Отработка методик первичной обработки данных измерений спектров и высотного профиля мощности.
  • Проведение регулярных наблюдений по Геофизическому календарю и целенаправленных экспериментов.
  • Организация и проведение комплексных экспериментов, задействующих различные зондирующие средства отдела.
  • Подготовка и реализация экспериментов по двухчастотному нагреву ионосферы.
  • Установка на Усольском полигоне дополнительных (к радару НР) установок зондирования ионосферы.
  • Подготовка описаний отдельных блоков оборудования РЛС "Днепр".
  • Разработка и поэтапная реализация системы контроля и управления радаром НР.
  • Проработка и реализация режима сканирования в наблюдениях.
  • Повышение чувствительности радара, включая замену переусилителей и доработку других узлов приемного тракта.
  • Проработка и реализация перехода на излучение сложных сигналов, коротких импульсов и посылка их.
  • Разработка и создание аппаратурно- программного комплекса цифровой регистрации радара НР и программного комплекса первичной обработки сигналов различными методами.
  • Разработка Аван-проекта полной модернизации радара, позволяющей обеспечить зондирование ионосферы методом НР и нейтральной атмосферы МСТ-методом, что включает в себя: постановку целей и задач, разработку научно -технического обоснования, создание эскизного проекта установки (или несколько ее вариантов, включая многопозиционный)

3.2. Задачи моделирования, вторичной обработки и анализа геофизических данных.

  • Совершенствование методик вторичной обработки и повышение качества измеряемых геофизических данных (спектральный метод и метод фарадеевского вращения).
  • Создание базы данных НР.
  • Внедрение современных методик обработки корреляционных измерений.
  • Разработка и создание комплекса по моделированию сигналов НР (спектров мощности- корреляционных функций) для различных геофизических условий.
  • Разработка новых методов и методик вторичной обработки сигналов НР.
  • Моделирование процесса рассеяния на неоднородностях различного вида , с целью изучения свойств реализаций сигналов рассеяния и их ансамблей.
  • Проведение геофизических исследований на основе ряда данных НР, что включает в себя изучение глобальных эффектов (геомагнитные возмущения, долготные вариации, долгопериодические колебания и др.), отдельных неординарных событий, вопросов физики термрсферы, региональных особенностей поведения параметров ионосферы. Круг геофизических задач должен расширяться по мере улучшения диагностических возможностей радара.

3.3. Задачи теории метода НР, распространения метровых радиоволн и их нелинейного взаимодействия в ионосфере.

  • Подготовка материалов по изложению существующего уровня теории метода НР.
  • Разработка вопросов теории рассеяния радиоволн на мелкомасштабных флуктуациях (включая как макроскопический так и микроскопический подходы).
  • Модели неоднородностей и флуктуаций ионосферы и атмосферы.
  • Разработка вопросов теории двухчастотной модификации ионосферы и методических основ активных экспериментов.
  • Развитие новых методов и методик зондирования, направленных на расширение диагностических возможностей радара НР.
  • Решение теоретических вопросов регистрации и обработки сигналов.

4. Экспериментальные исследования ионосферных возмущений естественного и техногенного происхождения и трансионосферного распространения радиоволн дециметрового диапазона на основе обработки данных глобальной сети двухчастотных приемников навигационных систем GPS-GLONASS.

Использование международной наземной сети двухчастотных приемников навигационной системы GPS, насчитывающей к февралю 2001 г. не менее 800 пунктов и поставляющей данные в Internet, открывает новую эру глобального, непрерывного и полностью компьютезированного мониторинга ионосферных возмущений естественного и техногенного происхождения как части комплекса космической погоды в околоземном пространстве (ОКП). В ближайшем будущем эта система дополнится за счет использования сигналов аналогичной российской системы ГЛОНАСС. В ИСЗФ СО РАН разработаны методы и технология глобального GPS детектора ионосферных возмущений, высокая чувствительность которого позволяет анализировать ионосферные возмущения с амплитудой до 10**(-3) от фонового значения полного электронного содержания. В сравнении с классическими радиофизическими средствами зондирования ионосферы эта технология впервые обеспечивает действительную непрерывность, высокое пространственно-временное разрешение и глобальность мониторинга ионосферных возмущений. Данные измерений фазовых характеристик сигналов GPS могут быть использованы для исследований глобально-временных характеристик трансионосферного распространения радиоволн дециметрового диапазона.

4.1. Разработка алгоритмов и программного комплекса обработки данных глобальной сети двухчастотных приемников GPS-GLONASS, получаемых через Internet. Определение полного электронного содержания и углов прихода сигналов GPS.

4.2. Создание базы данных глобальной сети GPS для выборочных интервалов времени, соответствующих различных уровням гелио-геомагнитных возмущений ОКП, сейсмической активности и техногенных воздействий различного типа (запуски ракет, промышленные взрывы, подземные испытания ядерного оружия).

4.3. Исследования глобальной активности естественных ионосферных неоднородностей различного масштаба, прежде всего крупномасштабных и среднемасштабных перемещающихся ионосферных возмущений, в геомагнитно-спокойных условиях и во время магнитных бурь. Исследования глобальных спектральных и динамических характеристик перемещающихся ионосферных возмущений. Проверка гипотезы о роли геомагнитных возмущений как фактора, определяющего характеристики спектра перемещающихся ионосферных возмущений. Исследования глобального отклика ионосферы на внезапное начало сильных геомагнитных бурь.

4.4. Исследования ударно-акустических волн, генерируемых при запусках ракет, промышленных взрывов, подземных ядерных испытаниях и землетрясениях. Разработка алгоритмов и программного комплекса обнаружения и локализации источников техногенных воздействий по данным навигационных систем GPS-GLONASS, основанных на современных достижениях в области комплексной пространственно-временной обработки сигналов фазированных антенных решеток.

4.5. Исследования глобальных характеристик ионосферного отклика солнечных вспышек с использованием разработанной в ИСЗФ новой технологии детектирования ионосферных эффектов солнечных вспышек, существенно улучшающей чувствительность и пространственно-временное разрешение наблюдений по сравнению с известными радиофизическими методами. Оценка чувствительности метода глобального интегрирования при обнаружении ионосферного отклика слабых солнечных вспышек и возмущений несолнечного происхождения (взрывы сверхновых). Определение пространственно-временных характеристик отклика ионосферы на сильные солнечные вспышки, в том числе пространственной неоднородности потока солнечного ультрафиолетового излучения в масштабах радиуса Земли. Оценка высотного распределения вклада этого излучения в возмущение полного электронного содержания с использованием метода затенения Землей потока солнечного излучения. Исследование зависимости отклика ионосферы от характеристик солнечных вспышек (класс вспышки, спектр излучения, положение источника на диске Солнца и т.д.).

4.6. Исследования пространственно-временных характеристик ионосферного отклика солнечных затмений, в частности полных солнечных затмений 9 марта 1997 г. и 11 августа 1999 г. Определение амплитуды и запаздывания ионосферного отклика затмения.

4.7. Разработка численной модели возмущений полного электронного содержания естественного и техногенного происхождения, необходимой для тестирования алгоритмов и программного комплекса обнаружения и определения характеристик этих возмущений.

4.8. Исследования влияния гелио-геомагнитных возмущений околоземного космического пространства на точность местоопределения в навигационных системах GPS-GLONASS. Исследования физических механизмов сбоев измерений дальности в навигационных системах GPS-GLONASS на основе данных глобальной сети GPS и классических средств мониторинга состояния ОКП. Разработка алгоритмов и автоматизированного программного комплекса мониторинга и прогноза потенциальной точности местоопределения.

4.9. Изучение спектральных и статистических характеристик доплеровского смещения частоты, вариаций углов прихода, фазовых мерцаний радиосигналов дециметрового диапазона при трансионосферном распространении в пределах орбиты ИСЗ GPS.

4.10. Создание в ИСЗФ центра мониторинга техногенных воздействий и прогноза потенциальной точности местоопределения на основе оперативного анализа данных глобальной сети GPS и гелио-геофизических данных, представленных в сети Internet.

Рейтинг@Mail.ru
DeSign: ABERNG (c) 2003